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Abstract

This project aims to modify the LSTMreg

architecture defined by (Adhikari et al.,
2019). We attempt to improve upon the
original architecture by introducing ELMo
word embeddings (Peters et al., 2018)
and a different schema for implementing
dropout to augment the original model’s
word-level embedding dropout. We as-
sess the impact of these word embedding
techniques by running our model against
a document classification task using the
AAPD and Reuters datasets. As a base-
line, we compare our results to the un-
modified architecture, and analyze the dif-
ferences in classification F1 score between
our modified architecture and the original.

1 Introduction

The task our model seeks to optimize for is text
classification. Specifically, Adhikari et al. claim
that simple, well-trained and well-parameterized
models can be competitive with more sophisti-
cated models, even without features like atten-
tion (Adhikari et al., 2019). Instead, techniques
like word-level embedding dropout are explored
to help optimize attentionless LSTM models. We
intend to evaluate this claim by sticking with their
basic model as a foundation, and making small,
intentional changes to determine whether modifi-
cations to word embeddings can still lead to im-
provements in classification tasks. Additionally,
these modifications to word embeddings are in-
tended to align with the original author’s goals of
maintaining architectural simplicity.

2 Prior Work

Attention, hierarchical structure, and sequence
generation have become more popular in recent

literature, but this inevitably increases model com-
plexity (Adhikari et al., 2019). For example, Wang
et al. showed that attention-based LSTMs are
great at obtaining superior results on document
classification (Wang et al., 2016), but such in-
creases in accuracy come at the cost of increased
complexity. This runs contrary to the goal of de-
creasing complexity while retaining accuracy.

Adhikari et al. lament a widespread belief that
current advances in ML are exaggerated by the
lack of empirical rigor. There have been case stud-
ies where more advanced models struggle with
simple baselines (Sculley et al., 2018). Notably,
Melis et al. found that a properly regularized, stan-
dard LSTM model outperforms other recent and
more complex models (Melis et al., 2017).

It’s worth further exploring regularization as
there have been numerous studies on word-level
embedding dropout to prevent overfitting. Vari-
ants of dropout schemes in RNNs have been
shown to yield improvements (Gal and Ghahra-
mani, 2016) and word-level embedding dropout
has been shown to be effective in LSTMs at
achieving state-of-the-art results (Merity et al.,
2017).

Lastly, incorporating ELMo (Peters et al., 2018)
has brought about drastic improvements in results
across a large variety of models by simply pluggin
them into existing models.

3 Methodology

For our project, we will retrofit an existing LSTM
architecture with additional layers, such as regu-
larization and dropout layers. We intend to test
several related architectures, each with a small,
isolated change to its layers, and then evaluate the
performance of each. As referenced in the fu-
ture works section of Adhikari et al., we intend
to incorporate ELMo word embeddings into this



framework and empirically evaluate its effects.
The authors of the original paper perform a

type of dropout they call ”embedding dropout” in
which they drop out entire word embeddings, ef-
fectively removing some of the words during each
iteration. We will refer to it as ”word-level em-
bedding dropout”. One such change will be modi-
fying the existing word-level embedding dropout
used in the LSTM architecture. We will be re-
placing this with a form of ”partial” dropout that
doesn’t drop out entire word embeddings, but in-
stead drops out portions of each embedding vec-
tor. Word-level embedding dropout is used to mit-
igate the effects that a few selected strong words
may have on influencing the model; the goal is to
avoid scenarios where the model becomes overly
reliant on certain words and then fails to incorpo-
rate the nuances of other words. We hypothesize
that partial embedding dropout will offer an alter-
native approach that instead focuses on regulariz-
ing sub-word level information, thereby prevent-
ing the model from being overly attached to cer-
tain specific features of embeddings.

By making several small isolated changes, we
hope to have fine-grained insight into which
changes were beneficial or harmful to the accuracy
of the model as a whole. The baseline architecture
we will be modifying is LSTMreg , as described in
Adhikari et al. (Adhikari et al., 2019) The model
consists of a bidirectional LSTM feeding into a
concatenated set of forward and backward hid-
den features, and then aggregated via max-pooling
over time.

4 Evaluation and Datasets

We will be using two datasets: the AAPD aca-
demic paper dataset and Reuters article tagging
dataset.1 Both the AAPD and Reuters datasets
are multi-labeled datasets for classification. The
AAPD academic paper dataset consists of ab-
stracts and up to 54 corresponding subjects the
academic paper pertains to. The target is to pre-
dict corresponding subjects of an academic pa-
per according to the content of the abstract. The
Reuters dataset consists of news articles that have
been tagged with the trading commodity topics
discussed in each article. Articles covering mul-
tiple topics may have multiple labels.

1All datasets located at following link: https:
//git.uwaterloo.ca/jimmylin/hedwig-data/
tree/master/datasets.

In each case, to evaluate our models, we will
compute the average accuracy and F1 scores of
each of our modified models on each dataset, and
compare these scores to the unmodified baseline
model. The baseline model evaluates the AAPD
and Reuters datasets with an F1 score.

We will also compare the training time of each
model to see which features most dramatically af-
fect the speed of computation, and assess each
model’s architectural complexity on a qualitative
scale.

5 Baseline Results

We began by setting up training the baseline
LSTMreg model according to the parameters out-
lined in the original paper (Adhikari et al., 2019).
This was done to ensure our model was train-
ing correctly on the given datasets with the stated
parameters and that their experiment was repro-
ducible. Note that Reuters and AAPD are multi-
labeled datasets for classification and they are
available and feasibly-sized datasets to train our
models on. Also note that the Yelp 2014 and
IMDB datasets included in the original paper were
not evaluated by us.

The Yelp 2014 dataset could not be found
in their repository and the IMDB dataset is not
trained on due to its large size and extremely long
training time in comparison to the other datasets.

Val. F1

Original Paper Results 89.1
Replicated Results 88.5

Table 1: Reuters Dataset F1 Scores with LSTMreg

Val. F1

Original Paper Results 73.1
Replicated Results 72.8

Table 2: AAPD Dataset F1 Scores with LSTMreg

Observe that the replicated results for both
datasets receive similar F1 scores to those found in
the original paper. With these results, we are ready
to move forward with tweaking the LSTMreg

model.
We also investigated the importance of word-

level embedding dropout which is a form of
dropout defined by the authors as a method by
which they perform ”dropout on entire word em-
beddings, effectively removing some of the words

https://git.uwaterloo.ca/jimmylin/hedwig-data/tree/master/datasets
https://git.uwaterloo.ca/jimmylin/hedwig-data/tree/master/datasets
https://git.uwaterloo.ca/jimmylin/hedwig-data/tree/master/datasets


(a) Figure 1: Baseline dev F1 scores for the Reuters dataset

(a) Figure 2: Baseline dev F1 scores for the AAPD dataset

at each training iteration”. Take a word-level em-
bedding dropout probability of 0.1: A given word
embedding vector has a 10 percent chance of being
dropped entirelyn . By varying the rates of dropout
in the model, one can observe the effectiveness of
utilizing embedding dropout in document classifi-
cation.

We then tested varying the word-level embed-
ding dropout rate of the LSTMreg model from
an interval of [0, 0.5]. We trained the model on
a Google Cloud Compute n1-highmem-8 cluster
running an NVIDIA K80 GPU.

We can see that even small dropout rates often
lead to a decrease in the F1 score of the model in
the smaller Reuters dataset. On the larger AAPD
dataset, there are extremely modest gains to F1 for
very small word-level embedding dropout rates,
but these gains vanish as soon as the dropout rate
increases.

Especially on larger datasets, word-level em-
bedding dropout shows some potential for im-

(a) Figure 3: Word-level Embedding Dropout versus Par-
tial Embedding Dropout

proved training performance, but the specific
scheme of word-level embedding dropout used in
LSTMreg leaves much to be desired. These re-
sults motivate the investigation of other dropout
schemes, which may offer similar or improved F1

scores compared to models using only word-level
embedding dropout, or using no dropout at all. In
particular, we will investigate the effects of us-
ing a ”partial embedding dropout”, which we hope
will allow our model to achieve competitive per-
formance on both the smaller Reuters and larger
AAPD datasets.

Our proposed partial embedding dropout is a
different form of dropout from the stated ”word-
level embedding dropout” used in the original pa-
per. Rather than applying dropout at the word
level, partial embedding dropout instead applies
dropouts within the embedding vector itself. If the
dropout level were set to 0.1, we would be drop-
ping 10 percent of all features in each embedding
rather than dropping ten percent of the words. See
Figure ?? for a visual representation of this.

6 Experimental Setup

6.1 Training
In order to best understand the effect of our
changes on overall model performance, we struc-
tured our experiment as an ablation study, and only
altered one aspect of the model at a time.

We first configured our LSTMreg model to run
using ELMo word embeddings. This was achieved
using an open-source ELMo implementation pro-



vided by AllenNLP2, which generates length 1024
contextualized embeddings for each word in an
input sentence. These contextualized embed-
dings are concatenated to the original length 300
word2vec embeddings, resulting in a length 1324
representation of each word.

Introducing ELMo embeddings into the model
proved quite resource-intensive and increased
training times dramatically, with per-epoch train-
ing times jumping from around two minutes to up-
wards of ten minutes, for a four-to-sixfold increase
in total training time. While it is likely that the
process of computing ELMo representations for
each sentence requires additional time and compu-
tational resources, we do not believe this was the
primary cause of increased train times. Instead, we
conjecture the largest factor affecting training time
was the increase in the size of embeddings used for
each word; with embeddings being substantially
larger in size, there is a significant amount more
data to process, and correspondingly high training
times are to be expected. It is probable that intro-
ducing ELMo embeddings with lower dimension-
ality would result in substantially faster training
times, but it is unclear what effect this might have
on the model’s classification accuracy or F1 score
– these questions are left to future research.

The process of introducing ELMo word em-
beddings to the LSTMreg model was complicated
by limitations of the underlying libraries. Both
PyTorch in general and AllenNLP in particular
rely upon NVIDIA’s cuDNN library3 in order to
enable hardware acceleration of training using a
GPU. Unfortunately, there is a known issue in the
cuDNN library whereby large matrix inputs (such
as those presented in the ELMo word embeddings)
sometimes fail in situations where clients request a
large batch size.4 The issue is unfixed in cuDNN’s
code as of the time of writing, so we were forced
to implement a workaround. As a result, on train-
ing runs where ELMo embeddings were used, we
were forced to reduce the batch size from 32 (as
was standard during all baseline trainings) to 16.
It is possible that this reduction in batch size could
have negatively impacted accuracy or F1 scores.

2AllenNLP: https://github.com/allenai/
allennlp/blob/master/tutorials/how_to/
elmo.md

3cuDNN: https://developer.nvidia.com/
cudnn

4cuDNN GitHub Issue: https://github.
com/pytorch/pytorch/issues/4107#
issuecomment-350906473

After introducing ELMo embeddings to the
model, we moved on to the second major alter-
ation to the model, and ran separate trials in which
the default word-level embedding dropout was re-
placed by our modified partial embedding dropout
scheme. Note that because this experiment is de-
signed in the style of an ablation study, this mod-
ified dropout scheme was tested only in conjunc-
tion with the default word2vec embeddings, and
not the modified ELMo word embeddings.

6.2 Hyperparameters

Unless otherwise specified, we used the default
hyperparameters of the LSTMreg architecture for
each dataset.

Specifically, we used a batch size of 32 (reduced
to 16 for ELMo), an embedding dimension of 300
(increased to 1324 for ELMo), and a single hidden
layer with dimension 512. The node dropout rate
was set to 0.5, and the embedding dropout rate was
varyied according to the methodology discussed
in Section 7. On the Reuters dataset we used a
learning rate of 0.01, and on the AAPD dataset
we used a learning rate of 0.001. The model was
trained for a maximum of 30 epochs, using early
stopping with a patience of 5.

As in the original LSTMreg paper, all random
seeds were set to 3435 for reproducibility.

7 Results and Discussion

7.1 ELMo Embeddings

Dropout Rate
0.1 0.2 0.3 0.4 0.5

F1 Score 85.45 83.82 83.23 83.55 83.55

Table 3: Reuters Dataset Dev F1 Scores with
LSTMreg Model using ELMo Embeddings and
Word-Level Embedding Dropout

Somewhat surprisingly, the addition of ELMo to
word embeddings did not result in the significant
gains to performance that were expected (but per-
haps there simply weren’t enough epochs realize
such gains).

https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md
https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md
https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://github.com/pytorch/pytorch/issues/4107#issuecomment-350906473
https://github.com/pytorch/pytorch/issues/4107#issuecomment-350906473
https://github.com/pytorch/pytorch/issues/4107#issuecomment-350906473


(a) Figure 4: ELMo Embeddings Reuters Dev F1 scores

The version of the model trained using ELMo
embeddings was only able to achieve a peak F1

score of 85.45 on the Reuters dataset, compared
to the peak F1 of 89.1 achieved by the baseline
model. The reasons behind this apparent lack of
performance improvement are unclear. It is pos-
sible that the increased size of embeddings causes
the ELMo-based model to train more slowly, and
that given additional training time results would
eventually surpass the baseline. Training beyond
the 30 epochs specified could have led to greater
F1 scores. This is supported by Figures 3 and
4, which show that models using ELMo tend to
plateau more gradually than those without. It is
also possible that the ELMo results suffered due
to the decrease in batch size necessitated by the
cuDNN bug discussed in Section 6.

It appeared that a lower word-level embedding
droprate led to greater F1 scores for the model
when using ELMo. As seen in Table 3, a droprate
of 0.1 led to the highest F1 score of 85.45 when
compared to all other tested dropout rates. Fig-
ure 4 also supports this statement as a dropout
rate of 0.1 consistently yields a higher F1 score
than all other dropout rates through most phases
of training. The next closest F1 score was only
83.82 when the dropout rate was 0.2. Dropout
rates greater than 0.5 may have led to better mod-
els because the size of the word embeddings be-
came so large when using ELMo. Though even
higher dropout rates could have led to even higher
F1 scores, it appears that lower dropout rates when
used with word-level embedding dropout yielded
the most positive results.

7.2 Partial Embedding Dropout

Our experiments replacing Adhikari et al.’s word-
level embedding dropout with our own form of
partial embedding dropout yielded more promis-
ing results.

Dropout Rate
0.1 0.2 0.3 0.4 0.5

F1 Score 89.41 89.48 89.70 86.41 88.67

Table 4: Reuters Dataset Dev F1 Scores with
LSTMreg Model and Partial Embedding Dropout

Dropout Rate
0.1 0.2 0.3 0.4 0.5

F1 Score 72.88 73.60 73.64 74.50 74.36

Table 5: AAPD Dataset Dev F1 Scores with
LSTMreg Model and Partial Embedding Dropout

The F1 Scores from Table 3 indicate that cer-
tain dropout rates with partial embedding dropout
perform on par with or better than the baseline
results in the original paper. Notably, the model
trained on the Reuters dataset with dropout rate of
0.3 resulted in a higher F1 score than the average
F1 score provided by the baseline model with their
word-level embedding dropout.

(a) Figure 5: Partial Embedding Dropout Reuters Dev F1

scores



(a) Figure 6: Partial Embedding Dropout AAPD Dev F1 scores

It is important to note that the original authors
trained all neural models on five different seeds
and presented their F1 score results with a stan-
dard deviation. Given the limited time, funding,
and GPU hardware available to us, we were only
able to train our models with a single seed and
thus cannot provide a standard deviation for our
F1 Scores.

The AAPD results turned out more impressive
than the results on the Reuters dataset. The highest
F1 score of 74.50 was obtained with a dropout rate
of 0.4. Compared to the baseline result of 73.1,
74.50 represents a small but sizable improvement.
Notably, this result falls above the standard devia-
tion of the baseline result, so we are confident that
our partial embedding dropout scheme has some
potential. However, we should approach these re-
sults with some caution. Since we lacked the re-
sources to run multiple trials at the peak dropout,
it is not clear whether our training run was partic-
ularly lucky or unlucky. Given additional funding,
we could conduct further trials in an attempt to de-
termine the exact size of the improvements made
by our partial dropout.

Our approach is also beneficial in terms of its
effects on the model’s qualitative complexity. Our
partial embedding dropout scheme makes only mi-
nor modifications to the conceptual framework of
similar dropout schemes already in common use
today. This conceptual similarity, combined with
our scheme’s ease of implementation and intuitive
motivation give our scheme a high degree of ped-
agogical potential.

In terms of training time, our model is also
competitive with the baseline. Analysis of the
two dropout implementations reveals that our par-
tial embedding dropout scheme uses a compara-

ble number of matrix operations to the baseline
word-level embedding dropout, and this is sup-
ported by empirical observations of the training
time. There was no substantial difference between
the running times of the partial dropout and word-
level dropout schemes, with both yielding train-
ing times in the neighborhood of two minutes per
epoch.

In summary, our partial embedding dropout
scheme yielded promising results, matching or im-
proving upon the F1 scores of the word-level em-
bedding dropout approach. Moreover, our dropout
scheme is favorable in terms of training time and
model complexity, since neither was substantially
compromised in order to achieve our observed per-
formance gains.

8 Conclusions and Future Work

Ultimately, our partial embedding dropout scheme
was able to achieve modest success. On the other
hand, the introduction of contextualized ELMo
word embeddings was disappointing, increasing
train times substantially while offering diminished
performance. Though we were able to achieve
F1 scores above the baseline using partial embed-
ding dropout, further research is required in order
to compute the F1 standard distribution and deter-
mine the precise effect size of our improved em-
bedding dropout scheme.

A potential extension of this work is to com-
plete running ELMo on the AAPD dataset (as we
could not finish training these models given tech-
nical and time constraints). Though it is likely that
it would lead to lower F1 scores when compared to
the baseline results, it is still a good idea to con-
firm the results on multiple datasets. With that be-
ing said, training our models on all datasets men-
tioned by the authors (AAPD, Reuters, IMDB, and
Yelp 2014) with multiple seeds would also lead us
towards this goal of consistency with the original
paper.

In addition, we could seek to balance the size
of the word2vec embeddings with the ELMo em-
beddings. Currently, we concatenate a length 300
word2vec embedding to a length 1024 ELMo em-
bedding to create our length 1324 final word em-
bedding. This is embedding is dominated by infor-
mation from ELMo and tweaks to this could lead
to better results. Reducing ELMo to a length 512
embedding would help this issue along with in-
creasing the dimensions of the word2vec embed-



ding.
Another new type of dropout could also be

developed by combining the original word-level
embedding dropout with our partial embedding
dropout. With this new form of dropout, a fraction
of embeddings get dropped (as in word-level em-
bedding dropout) but you only drop another frac-
tion of the embedding and not the entire word (as
in partial embedding dropout). Hopefully, this so-
lution would combine the benefits of word-level
and partial embedding dropout, allowing for the
model to achieve improved generality at both a
word-level and an embedding-level.

9 Contributions

We all contributed equally to this project by
working together (quite literally , in the same
room) so it’s difficult to clearly delineate who did
what. We each worked on different aspects of the
code to train the models and collect the data. Each
of us also contributed equally to the poster, and
also to the writing of this report.
Kevin Liu: contributed equally
William Sweeny: contributed equally
Justin Tran: contributed equally
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