
Improving LSTM Document Classifiers by Optimizing Word Embedding
Techniques

Kevin Liu, William Sweeny, Justin Tran
Department of Computer Science

Princeton University
{kl16, wsweeny, jctran}@princeton.edu

Abstract

This project aims to modify the LSTMreg

architecture defined by (Adhikari et al.,
2019). We attempt to improve upon the
original architecture by introducing ELMo
word embeddings (Peters et al., 2018)
and a different schema for implementing
dropout to augment the original model’s
word-level embedding dropout. We as-
sess the impact of these word embedding
techniques by running our model against
a document classification task using the
AAPD and Reuters datasets. As a base-
line, we compare our results to the un-
modified architecture, and analyze the dif-
ferences in classification F1 score between
our modified architecture and the original.

1 Introduction

The task our model seeks to optimize for is text
classification. Specifically, Adhikari et al. claim
that simple, well-trained and well-parameterized
models can be competitive with more sophisti-
cated models, even without features like atten-
tion (Adhikari et al., 2019). Instead, techniques
like word-level embedding dropout are explored
to help optimize attentionless LSTM models. We
intend to evaluate this claim by sticking with their
basic model as a foundation, and making small,
intentional changes to determine whether modifi-
cations to word embeddings can still lead to im-
provements in classification tasks. Additionally,
these modifications to word embeddings are in-
tended to align with the original author’s goals of
maintaining architectural simplicity.

2 Prior Work

Attention, hierarchical structure, and sequence
generation have become more popular in recent

literature, but this inevitably increases model com-
plexity (Adhikari et al., 2019). For example, Wang
et al. showed that attention-based LSTMs are
great at obtaining superior results on document
classification (Wang et al., 2016), but such in-
creases in accuracy come at the cost of increased
complexity. This runs contrary to the goal of de-
creasing complexity while retaining accuracy.

Adhikari et al. lament a widespread belief that
current advances in ML are exaggerated by the
lack of empirical rigor. There have been case stud-
ies where more advanced models struggle with
simple baselines (Sculley et al., 2018). Notably,
Melis et al. found that a properly regularized, stan-
dard LSTM model outperforms other recent and
more complex models (Melis et al., 2017).

It’s worth further exploring regularization as
there have been numerous studies on word-level
embedding dropout to prevent overfitting. Vari-
ants of dropout schemes in RNNs have been
shown to yield improvements (Gal and Ghahra-
mani, 2016) and word-level embedding dropout
has been shown to be effective in LSTMs at
achieving state-of-the-art results (Merity et al.,
2017).

Lastly, incorporating ELMo (Peters et al., 2018)
has brought about drastic improvements in results
across a large variety of models by simply pluggin
them into existing models.

3 Methodology

For our project, we will retrofit an existing LSTM
architecture with additional layers, such as regu-
larization and dropout layers. We intend to test
several related architectures, each with a small,
isolated change to its layers, and then evaluate the
performance of each. As referenced in the fu-
ture works section of Adhikari et al., we intend
to incorporate ELMo word embeddings into this



framework and empirically evaluate its effects.
The authors of the original paper perform a

type of dropout they call ”embedding dropout” in
which they drop out entire word embeddings, ef-
fectively removing some of the words during each
iteration. We will refer to it as ”word-level em-
bedding dropout”. One such change will be modi-
fying the existing word-level embedding dropout
used in the LSTM architecture. We will be re-
placing this with a form of ”partial” dropout that
doesn’t drop out entire word embeddings, but in-
stead drops out portions of each embedding vec-
tor. Word-level embedding dropout is used to mit-
igate the effects that a few selected strong words
may have on influencing the model; the goal is to
avoid scenarios where the model becomes overly
reliant on certain words and then fails to incorpo-
rate the nuances of other words. We hypothesize
that partial embedding dropout will offer an alter-
native approach that instead focuses on regulariz-
ing sub-word level information, thereby prevent-
ing the model from being overly attached to cer-
tain specific features of embeddings.

By making several small isolated changes, we
hope to have fine-grained insight into which
changes were beneficial or harmful to the accuracy
of the model as a whole. The baseline architecture
we will be modifying is LSTMreg , as described in
Adhikari et al. (Adhikari et al., 2019) The model
consists of a bidirectional LSTM feeding into a
concatenated set of forward and backward hid-
den features, and then aggregated via max-pooling
over time.

4 Evaluation and Datasets

We will be using two datasets: the AAPD aca-
demic paper dataset and Reuters article tagging
dataset.1 Both the AAPD and Reuters datasets
are multi-labeled datasets for classification. The
AAPD academic paper dataset consists of ab-
stracts and up to 54 corresponding subjects the
academic paper pertains to. The target is to pre-
dict corresponding subjects of an academic pa-
per according to the content of the abstract. The
Reuters dataset consists of news articles that have
been tagged with the trading commodity topics
discussed in each article. Articles covering mul-
tiple topics may have multiple labels.

1All datasets located at following link: https:
//git.uwaterloo.ca/jimmylin/hedwig-data/
tree/master/datasets.

In each case, to evaluate our models, we will
compute the average accuracy and F1 scores of
each of our modified models on each dataset, and
compare these scores to the unmodified baseline
model. The baseline model evaluates the AAPD
and Reuters datasets with an F1 score.

We will also compare the training time of each
model to see which features most dramatically af-
fect the speed of computation, and assess each
model’s architectural complexity on a qualitative
scale.

5 Baseline Results

We began by setting up training the baseline
LSTMreg model according to the parameters out-
lined in the original paper (Adhikari et al., 2019).
This was done to ensure our model was train-
ing correctly on the given datasets with the stated
parameters and that their experiment was repro-
ducible. Note that Reuters and AAPD are multi-
labeled datasets for classification and they are
available and feasibly-sized datasets to train our
models on. Also note that the Yelp 2014 and
IMDB datasets included in the original paper were
not evaluated by us.

The Yelp 2014 dataset could not be found
in their repository and the IMDB dataset is not
trained on due to its large size and extremely long
training time in comparison to the other datasets.

Val. F1

Original Paper Results 89.1
Replicated Results 88.5

Table 1: Reuters Dataset F1 Scores with LSTMreg

Val. F1

Original Paper Results 73.1
Replicated Results 72.8

Table 2: AAPD Dataset F1 Scores with LSTMreg

Observe that the replicated results for both
datasets receive similar F1 scores to those found in
the original paper. With these results, we are ready
to move forward with tweaking the LSTMreg

model.
We also investigated the importance of word-

level embedding dropout which is a form of
dropout defined by the authors as a method by
which they perform ”dropout on entire word em-
beddings, effectively removing some of the words

https://git.uwaterloo.ca/jimmylin/hedwig-data/tree/master/datasets
https://git.uwaterloo.ca/jimmylin/hedwig-data/tree/master/datasets
https://git.uwaterloo.ca/jimmylin/hedwig-data/tree/master/datasets


(a) Figure 1: Baseline dev F1 scores for the Reuters dataset

(a) Figure 2: Baseline dev F1 scores for the AAPD dataset

at each training iteration”. Take a word-level em-
bedding dropout probability of 0.1: A given word
embedding vector has a 10 percent chance of being
dropped entirelyn . By varying the rates of dropout
in the model, one can observe the effectiveness of
utilizing embedding dropout in document classifi-
cation.

We then tested varying the word-level embed-
ding dropout rate of the LSTMreg model from
an interval of [0; 0:5]. We trained the model on
a Google Cloud Compute n1-highmem-8 cluster
running an NVIDIA K80 GPU.

We can see that even small dropout rates often
lead to a decrease in the F1 score of the model in
the smaller Reuters dataset. On the larger AAPD
dataset, there are extremely modest gains to F1 for
very small word-level embedding dropout rates,
but these gains vanish as soon as the dropout rate
increases.

Especially on larger datasets, word-level em-
bedding dropout shows some potential for im-

(a) Figure 3: Word-level Embedding Dropout versus Par-
tial Embedding Dropout

proved training performance, but the specific
scheme of word-level embedding dropout used in
LSTMreg leaves much to be desired. These re-
sults motivate the investigation of other dropout
schemes, which may offer similar or improved F1

scores compared to models using only word-level
embedding dropout, or using no dropout at all. In
particular, we will investigate the effects of us-
ing a ”partial embedding dropout”, which we hope
will allow our model to achieve competitive per-
formance on both the smaller Reuters and larger
AAPD datasets.

Our proposed partial embedding dropout is a
different form of dropout from the stated ”word-
level embedding dropout” used in the original pa-
per. Rather than applying dropout at the word
level, partial embedding dropout instead applies
dropouts within the embedding vector itself. If the
dropout level were set to 0.1, we would be drop-
ping 10 percent of all features in each embedding
rather than dropping ten percent of the words. See
Figure ?? for a visual representation of this.

6 Experimental Setup

6.1 Training
In order to best understand the effect of our
changes on overall model performance, we struc-
tured our experiment as an ablation study, and only
altered one aspect of the model at a time.

We first configured our LSTMreg model to run
using ELMo word embeddings. This was achieved
using an open-source ELMo implementation pro-


